P P SAVANI UNIVERSITY

Third Semester of B. Tech. Examination

December 2017

SESH2070 Mathematical Methods for Machine Learning

23.11.2022, Wednesday Time: 10:00 a.m. To 12:30 p.m. Maximum Marks: 60

Instructions:	ion paper comprises of two sections.			
	and II must be attempted in separate answer sheets.			
3. Make suit	able assumptions and draw neat figures wherever required.			
	entific calculator is allowed.			
	SECTION - I			
Q-1 A	nswer the Following (Any Five)	[05]	CO	BT
	rite a definition of Differential Equation.		1	1/
(ii) D	efine Exact Differential Equation.	market,	1	1/
(iii) Fo	orm a PDE for $z = ax + by + ab$.	THE PERSON NAMED IN	1	1/
(iv) D	efine Bernoulli's Equation.		1	1/
	rite Fourier series of odd function.		2	1/
	efine Linear Differential Equation.		1	1/
(vii) W	rite Euler's Formulae.		2	
2-2 (a) So	$\text{live: } (y^2 - x^2)dx + 2xydy = 0.$	[05]		4
2-2 (b) So	elve: $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \cos 2x \sin x$	[05]	1	4
0		[co]		
	Alve: $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$.	[05]	1	
		[05]	1	4
	live the IVP $y'' + 4y = 8e^{-2x} + 4x^2 + 2$, $y(0) = 2$, $y'(0) = 2$. live: $y'' + 2y' + 3y = 2x^2$.	[05]	2	4/
		[05]	1	4
	and the general solution of $y'' + y = 32x^3$ Using method of Undetermined	[05]	2	3/
01	pefficients.			
	and the solution of the given PDE: $(4D^3 - 3DD' + {D'}^3z) = 0$.	[05]	2	5
	lve: $p(1-q^2) = q(1-z)$.		2	
	tempt any one.	[05]	2	4/
	and the Fourier Series of $f(x) = x^3$ in the interval $(-\pi, \pi)$.	[05]	2	5
	and the Fourier Series of $f(x) = x^2$ in the interval $(-\pi, \pi)$.		2	5
,	SECTION - II		2	2
-1 Aı	nswer the Following (Any Five)	[05]		
	rite the Gradient of a Scalar Function.	[00]	4	1/
ii) Fi	$\operatorname{ind} \nabla f \text{ if } f = x^2 + y^2 + z^2.$		4	1/
	hat is Path Independence of Line Integral.		4	1/
	rite Green's Theorem in the XY-plane.		4	1/
	Curl(f) = 0 then a vector function f is said to be		4	1/
	rite the formula of Divergence of f .		4	1/
	rite the Directional Derivative of Scalar function.		4	1/
	and a Unit vector normal to the Surface $x^2 + y^2 - z = 10$ at the point (1,1,1)	. [05]	4	4
	termine the constants a and b such that $curl(f)$ is 0 where	[05]	4	4
	$= (2xy + 3yz)i + (x^2 + axz - 4z^2)j + (3xy + 2byz)k.$			
OI				

Q-2(a)	Find $curl(f)$ at the point $(1, -1, 1)$ if, $f = (xyz)i + (3x^2y)j + (xz^2 - y^2z)k$.	[05]	4	4
Q-2 (b)	Find the Directional Derivative of $f = xy + yz + zx$ at the point (1,2,0) in the direction of vector $i + 2j + 2k$.	[05]	3	4
Q-3(a)	Using Green's Theorem Evaluate $\oint_C (xy - x^2) dx + x^2 dy$ Where C is the triangle	[05]	3	3/5
	bounded by lines $y = 0$, $x = 1$ and $x = y$.			
Q-3 (b)	Evaluate $\int_c f dr$ along the parabola $y^2 = x$ between the points (0,0) to (1,1).	[05]	3	5
	Where $f = (x^2)i + (xy)j$.			
	OR			
Q-3	Evaluate $\int_{c} f dr$ Where $f = y^{2}i + 2xyj$	[10]	3	5
	(i) C is Straight Line from (0,0) to (1,2).			
	(ii) C is the Parabola $y = 2x^2$ from (0,0) to (1,2).			
Q-4	Attempt any one/two.	[05]	4	4
(i)	Determine the Curvature $X = 3t$, $Y = 3t^2$, $Z = 2t^2$ at $t = 1$.	al water		
(ii)	Determine the Torsion $X = 3t$, $Y = 3t^2$, $Z = 2t^2$ at $t = 1$.	1		

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create